Two Algorithms for the The Efficient Computation of Truncated Pivoted QR Approximations to a Sparse Matrix

dc.contributor.authorStewart, G. W.en_US
dc.date.accessioned2004-05-31T22:50:14Z
dc.date.available2004-05-31T22:50:14Z
dc.date.created1998-02en_US
dc.date.issued1998-10-15en_US
dc.description.abstractIn this note we propose two algorithms to compute truncated pivoted QR approximations to a sparse matrix. One is based on the Gram--Schmidt algorithm, and the other on Householder triangularization. Both algorithms leave the original matrix unchanged, and the only additional storage requirements are arrays to contain the factorization itself. Thus, the algorithms are particularly suited to determining low-rank approximations to a sparse matrix. (Also cross-referenced as UMIACS-TR-98-12)en_US
dc.format.extent115192 bytes
dc.format.mimetypeapplication/postscript
dc.identifier.urihttp://hdl.handle.net/1903/941
dc.language.isoen_US
dc.relation.isAvailableAtDigital Repository at the University of Marylanden_US
dc.relation.isAvailableAtUniversity of Maryland (College Park, Md.)en_US
dc.relation.isAvailableAtTech Reports in Computer Science and Engineeringen_US
dc.relation.isAvailableAtUMIACS Technical Reportsen_US
dc.relation.ispartofseriesUM Computer Science Department; CS-TR-3875en_US
dc.relation.ispartofseriesUMIACS; UMIACS-TR-98-12en_US
dc.titleTwo Algorithms for the The Efficient Computation of Truncated Pivoted QR Approximations to a Sparse Matrixen_US
dc.typeTechnical Reporten_US

Files

Original bundle

Now showing 1 - 2 of 2
No Thumbnail Available
Name:
CS-TR-3875.ps
Size:
112.49 KB
Format:
Postscript Files
Loading...
Thumbnail Image
Name:
CS-TR-3875.pdf
Size:
137.45 KB
Format:
Adobe Portable Document Format
Description:
Auto-generated copy of CS-TR-3875.ps