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ABSTRACT

In this note we propose two algorithms to compute truncated pivoted QR
approximations to a sparse matrix. One is based on the Gram—Schmidt al-
gorithm, and the other on Householder triangularization. Both algorithms
leave the original matrix unchanged, and the only additional storage require-
ments are arrays to contain the factorization itself. Thus, the algorithms are
particularly suited to determining low-rank approximations to a sparse ma-
trix.

1. Introduction

Let X be an nxp matrix with » > p. This paper concerns the approximation of X by
a matrix X of rank & < p. The most elegant solution to this problem is the truncated
singular value approximation which gives an X that deviates minimally from X in both
the spectral and Frobenius norms."

A different approximation may be had from the pivoted QR decomposition. This

decomposition is a factorization of the form

o (g

where () is orthogonal, R is upper triangular, and II is a permutation matrix that
corresponds to column interchanges in X (i.e., pivoting). If we partition?

Ryt Rig+
X =(Qu1 Qi1 Qipr1) | 0 Ripyrpepr | I, (1)
0 0
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!Since the purpose of this note is to describe rearrangements of two standard algorithms, we assume
that the reader is familiar with the basics, which are covered in an excellent book by A. Bjdrck 1]

?In the partitions to follow we use northwest indexing, in which each block has the index of the
element in the northwest corner.



2 Computing truncated pivoted QR decompositions

where Rqq is of order k, then
X = Q11(R11 R1,k+1)HT (2)

is a rank k approximation to X with [|[X — X|| = ||Rrt1ss1] in the spectral and
Frobenius norms. If Rjiq k41 is sufficiently small, the approximation X solves our
problem. We will call (2) the truncated pivoted QR approximation to X.

The singular value and pivoted QR decompositions loose some of their their ap-
peal when X is large and sparse. The problem is that the conventional algorithms for
computing these decomposition proceed by transformations that quickly destroy the
sparsity of X.? For the singular value decomposition, recourse must be had to iterative
approximations. The purpose of this note is to show that the pivoted QR decomposition
can be implemented in such a way that the sparsity of X is not compromised.

We actually give two algorithms, one based on Gram—Schmidt orthogonalization
and the other on Householder triangularization. The key idea of both is to build up the
Q-factor column by column and the R-factor row by row, leaving the original matrix X
unchanged. Only when a column of X is needed to form a column of ) is it transformed.
The Gram—Schmidt variant computes the explicit factorization and is conceptually sim-
pler. The algorithm based on Householder triangularization provides an implicit basis
for the orthogonal complement of the column space of the decomposition. Both have
essentially the same complexity.

2. The Gram—Schmidt variant

Let X = (21 --- x,) be partitioned by columns, and let X, = (21 --- zj). Suppose we
have computed a QR factorization.

Xpo1 = Qr—1Ri1,

where Rqq is upper triangular of order k—1. Then the corresponding QR approximation
is

Xio1 = Qr_1(Ry1 Rup),
where
Rip= QM (xp -+ wp).

Now suppose we want to update this approximation to include Xj. This can be
accomplished by one step of the Gram—Schmidt algorithm:

Tt should be stressed that the problem is not in the lack of sparsity of approximation X, which in
both approaches is represented economically in factored form.
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1. 7= Qg_lxk
2. =2 —Qr-171k

3
3. ek = ||axl| (3)
4. G = qr /e

Then

0 TLE

(k—1)
Xp = (Xpo1 2p) = (Qr—1 @) (RH le)

is the updated QR factorization. To compute the rest of the approximation, we need
only compute the kth row of R, which has the form

Fika1 = G (ke o0 2p): (4)

This updating procedure is very close to what we promised above. Each step gen-
erates a new column of ¢} and a new row of R. The only part of X that is modified is
the column that eventually becomes the new column of ¢). The only other use made of
X is a vector-matrix product in (4) to fill out the kth row of R. However, there remain
two problems.

The first problem is that to get good approximations we must incorporate column
pivoting into our algorithm. Specifically, at the beginning of the kth stage of the al-
gorithm, we must select the column @; of (z --+ a,) for which ||(I — Qx—1QF_, )]
is maximal and interchange it with 2. The computation of (I — Qk_lQE_l)wj for all
7 > k effectively transforms X into a dense matrix.

The answer to the this problem lies in the following well-known formula:

k-1
I = Qr—1Qi—n)zjll = [l l* = Y.
=1
This formula allows us to downdate the column norms of X as we compute rows of R
to give the norms of the projected columns.

The second problem is that the Gram-Schmidt algorithms as implemented above
is not guaranteed to produce a matrix ¢J; whose columns are orthogonal to working
accuracy. The cure for this problem is a process in which g, is reorthogonalized against
the previous ¢;. The details of this process, which also alters the £th columns of R have
been well treated in [1], and we omit them.

Figure 1 contains an algorithm implementing this method. The algorithm continues
until the projected columns norms, which correspond to the norms of the columns of
Riq k41 in (1), become sufficiently small, at which point the process terminate with the
rank k approximation X = Q[:, 1:k]*R[1:k, 1:p]. For ease of exposition we have made
explicit interchanges in X. The only unusual feature is the omission of the step
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Given an nxp (n > p) matrix X this algorithm returns a truncated pivoted QR decom-
position of X . Initially, the matrices ¢ and R are void.

Loowy =X j=1....p

2. Determine an index p; such that v, is maximal

3. fork=1top

4. X[, k] = X[:, pi]

5. R[1:k—1,k] < R[1:k—1, px]

6 QL k= X[, k] — Q[ Lik—1]xR[1:k—1, k]

T R[EH = QLM

8. Qs k] = Q[:, k]/ Rk, k]

9. If necessary reorthogonalize Q[:, k] and adjust R[1:k—1, k]
10. Rk, k+1:p) = Q[:, k] " X[z, k+1:p]
11. v; = v; — Rk, j]%, j=k+1,...,n
12. Determine an index pgiq > k+1 such that Vprgr 18 maximal
13. if (v, is sufficiently small) leave £k fi
14. end for k.

Figure 1: Truncated pivoted QR factorization: Gram—Schmidt version

1. R[1:k—1,k] = Q[:, 1:k—1]T+ X[, k]

that corresponds to statement 1 in (3). The reason is that these numbers have already
been computed as we have added rows to R.

3. Orthogonal triangularization

We now turn to using orthogonal triangularization to compute truncated pivoted QR
approximations. We begin with a brief description of how the pivoted QR decomposition
is computed via Householder transformations. Before the kth stage of the reduction, we
have determined Householder transformations Hy,..., Hx_1 and a permutation matrix
II;,_ such that

Ry R
Hyoy - Hi Xy = ( o X;’;) (5)

where Rqq is triangular of order k—1. One then determines the column of largest 2-norm
of Xy and swaps it with the first, along with the corresponding columns of Ry, to get

_ Ry R
Hy q- - H X T, = ( 0” X:)
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Here II; is a permutation matrix representing the interchange of columns. Now a
Householder transformation Hy = I — &kﬂg is determined so that

i.5 (7‘ e Thg )
kXkE = = .
0 Xpgir+1
If we set ug = (0 ﬂg), H, =1 - ukug, and I = Tp_xII;, then (5) holds with &
advanced by one.

If after the kth stage the largest column norm of Xk_|_17k_|_1 is sufficiently small, we
may terminate the procedure with a truncated approximation to X of rank k., in which
the matrix Q71 is represented as the product Hy, - -- Hy.

In these terms, the pivoting strategy introduced above amounts to pivoting on the
column of X for which the corresponding column norm of Xy is maximal. As above,
the square of the norm of the jth column wgkk) is (ignoring interchanges) given by

k-1
2
= [lell* =) 7
=1

S it
If we know the first k—1 rows of R, we can downdate the column norms of X to give
the column norms of Xx.

Moreover to compute the Householder transformation at the kth stage we need only
one column from X} to compute ug. This column can be computed on the spot from
the corresponding column of X, used to generate ug, and discarded. Thus there is no
need to transform the entire matrix X.

These ideas are best implemented using an elegant representation for the product of
Householder transformations due to Schreiber and Van Loan [2]. Specifically, if we set

Uk — (ul uk)7
then
(1 =l )+ (1 = upd) = OO, (6)

where the unit lower triangular matrix Ty can be generated by the following recurrence:

T 1 —Tp UL u
Tk:(%l S ’“) (7)

We will call (6) a UTU representation of the product on the left-hand side.
If we maintain the pivoted Q-factor of X in UTU form, we can compute the truncated
pivoted factorization without modifying X. Specifically, suppose that just before the
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Given an nxp (n > p) matrix X this algorithm returns a truncated pivoted QR decom-
position of X. The Q-factor is returned in UTU form. Initially the matrices U, T, R,
and S are void.

Loy = X401 d=1,....p

2. Determine an index p; such that v, is maximal

3. fork=1top

4. X[, k] = X[:, pi]

5. R[1:k—1,k] < R[1:k—1, px]

6 S[l:k—1,k] < S[1:k—1, pg]

7 T = X[, k] = U[:, Lk=1%T U[:, 1:k—1] " X[z, k]

8 Determine u from z
T —TxU'su

0. r= (g T

10. U= (U u)

S
w5 ()

12. R = (X[k, ] - U]?k, :]*TT*S>

13. v; = v; — Rk, j]%, j=k+1,...,n

14. Determine an index pgiq > k+1 such that Vprgr 18 maximal
15. if (v, is sufficiently small) leave £k fi

16. end for £

Figure 2: Truncated pivoted QR decomposition: UTU version

kth step, we have Ug_q, Tr_1, and an auxiliary matrix Sp_q = UkT_le_l, along with
the current downdated column norms of X. Then the pivot column can be determined
from the downdated norms. If z denotes the value of this column in the original matrix
X, the transformed value can be calculated as # = z — Uk_lTkT_lUkT_lx. From this the
kth Householder vector uy can be computed, and Ug_q1, Tx_1, and Sr_q1 can be updated.
Finally, if u* denotes the kth row of Uy, and 2* denotes the kth row of X, then the kth
row of R can be computed in the form 2% — uFTyS,. From this the new column norms
can be computed and the process repeated.

The code in Figure 2 implements this sketch. As with the Gram—Schmidt version,
the algorithm is quite efficient in terms of both operations and storage. Excepting
interchanges, which we have incorporated explicitly to simplify the exposition, the array
X is never modified. One column of it is used at each stage to compute the current
Householder transformation, and the vector-matrix product u*X must be formed to
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update the auxiliary matrix 5. If the additional storage for S is too burdensome, the
rows of R may be dropped after they have been used to downdate the column norms,
and R can be reconstituted in S when the algorithm terminates. At this time the one
may go on to compute the first & columns of @) explicitly. Alternatively, one can leave
the entire matrix ¢ in UTU form.
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