Generalized Eulerian Numbers and the Topology of the Hessenberg Variety of a Matrix.

dc.contributor.authorMari, Filippo deen_US
dc.contributor.authorShayman, M.A.en_US
dc.contributor.departmentISRen_US
dc.date.accessioned2007-05-23T09:39:11Z
dc.date.available2007-05-23T09:39:11Z
dc.date.issued1987en_US
dc.description.abstractLet A {AN ELEMENT OF} gl(n,C) and let p be a positive integer. The Hessenberg variety of degree p for A is the subvariety Hess (p, A) of the complete flag manifold consisting of those flags S_1, {SUBSET}... {SUBSET} S_{n-1}in C^n which satisfy the condition AS_i {SUBSET} S_{i+p} for all i. We show that if A has distinct eigenvalues, then Hess (p, A) is smooth and connected. The odd Betti numbers of Hess (p, A) vanish, while the even Betti numbers are given by a natural generalization of the Eulerian numbers.en_US
dc.format.extent881959 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/1903/4678
dc.language.isoen_USen_US
dc.relation.ispartofseriesISR; TR 1987-173en_US
dc.titleGeneralized Eulerian Numbers and the Topology of the Hessenberg Variety of a Matrix.en_US
dc.typeTechnical Reporten_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR_87-173.pdf
Size:
861.29 KB
Format:
Adobe Portable Document Format