Generalized Eulerian Numbers and the Topology of the Hessenberg Variety of a Matrix.
dc.contributor.author | Mari, Filippo de | en_US |
dc.contributor.author | Shayman, M.A. | en_US |
dc.contributor.department | ISR | en_US |
dc.date.accessioned | 2007-05-23T09:39:11Z | |
dc.date.available | 2007-05-23T09:39:11Z | |
dc.date.issued | 1987 | en_US |
dc.description.abstract | Let A {AN ELEMENT OF} gl(n,C) and let p be a positive integer. The Hessenberg variety of degree p for A is the subvariety Hess (p, A) of the complete flag manifold consisting of those flags S_1, {SUBSET}... {SUBSET} S_{n-1}in C^n which satisfy the condition AS_i {SUBSET} S_{i+p} for all i. We show that if A has distinct eigenvalues, then Hess (p, A) is smooth and connected. The odd Betti numbers of Hess (p, A) vanish, while the even Betti numbers are given by a natural generalization of the Eulerian numbers. | en_US |
dc.format.extent | 881959 bytes | |
dc.format.mimetype | application/pdf | |
dc.identifier.uri | http://hdl.handle.net/1903/4678 | |
dc.language.iso | en_US | en_US |
dc.relation.ispartofseries | ISR; TR 1987-173 | en_US |
dc.title | Generalized Eulerian Numbers and the Topology of the Hessenberg Variety of a Matrix. | en_US |
dc.type | Technical Report | en_US |
Files
Original bundle
1 - 1 of 1