Perceptual Pat: A Virtual Human Visual System for Iterative Visualization Design

dc.contributor.authorShin, Sungbok
dc.contributor.authorHong, Sanghyun
dc.contributor.authorElmqvist, Niklas
dc.date.accessioned2023-09-14T18:54:13Z
dc.date.available2023-09-14T18:54:13Z
dc.date.issued2023-04-23
dc.description.abstractDesigning a visualization is often a process of iterative refinement where the designer improves a chart over time by adding features, improving encodings, and fixing mistakes. However, effective design requires external critique and evaluation. Unfortunately, such critique is not always available on short notice and evaluation can be costly. To address this need, we present Perceptual Pat, an extensible suite of AI and computer vision techniques that forms a virtual human visual system for supporting iterative visualization design. The system analyzes snapshots of a visualization using an extensible set of filters—including gaze maps, text recognition, color analysis, etc—and generates a report summarizing the findings. The web-based Pat Design Lab provides a version tracking system that enables the designer to track improvements over time. We validate Perceptual Pat using a longitudinal qualitative study involving 4 professional visualization designers that used the tool over a few days to design a new visualization.
dc.description.urihttps://doi.org/10.1145/3544548.3580974
dc.identifierhttps://doi.org/10.13016/dspace/u9g8-fyyn
dc.identifier.citationSungbok Shin, Sanghyun Hong, and Niklas Elmqvist. 2023. Perceptual Pat: A Virtual Human Visual System for Iterative Visualization Design. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems (CHI ’23), April 23–28, 2023, Hamburg, Germany. ACM, New York, NY, USA, 17 pages.
dc.identifier.urihttp://hdl.handle.net/1903/30494
dc.language.isoen_US
dc.publisherAssociation for Computer Machinery (ACM)
dc.relation.isAvailableAtCollege of Information Studiesen_us
dc.relation.isAvailableAtInformation Studiesen_us
dc.relation.isAvailableAtDigital Repository at the University of Marylanden_us
dc.relation.isAvailableAtUniversity of Maryland (College Park, MD)en_us
dc.subjectvirtual human
dc.subjectvirtual human visual system
dc.subjectsimulation
dc.subjectmachine learning
dc.subjectcomputer vision
dc.subjectvisualization
dc.subjectiterative design
dc.titlePerceptual Pat: A Virtual Human Visual System for Iterative Visualization Design
dc.typeArticle
local.equitableAccessSubmissionNo

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Shin et al.pdf
Size:
9.96 MB
Format:
Adobe Portable Document Format