Measurements of charge motion in silicon with a single electron transistor: toward individual dopant control

dc.contributor.advisorKane, Bruce Een_US
dc.contributor.authorBrown, Kenton Randolphen_US
dc.contributor.departmentPhysicsen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.date.accessioned2006-02-04T07:17:36Z
dc.date.available2006-02-04T07:17:36Z
dc.date.issued2005-12-02en_US
dc.description.abstractI present the results of experimental investigations into single electron transistors made on doped silicon substrates, with the ultimate goal of individual dopant manipulation at millikelvin temperatures. The sensitivity of single electron transistors to local charge motion should enable observations of single donor ionization. Here I formulate a model for the electrostatic control of a donor electron near an oxide interface and describe a device geometry that should enable its measurement. I give data from several Al-AlO<sub>x</sub>-Al single electron transistors below 100 mK that provide evidence for field-induced dopant ionization, as well as for the motion of individual charges whose origins are not yet understood. I also describe a cryogenic scanning force microscope that I built to measure large arrays of single electron transistors.en_US
dc.format.extent5704625 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/1903/3160
dc.language.isoen_US
dc.subject.pqcontrolledPhysics, Condensed Matteren_US
dc.subject.pquncontrolledsingle electron transistoren_US
dc.subject.pquncontrolleddonoren_US
dc.subject.pquncontrolledsiliconen_US
dc.subject.pquncontrolledcharge motionen_US
dc.subject.pquncontrolledquantum computingen_US
dc.subject.pquncontrolledqubiten_US
dc.titleMeasurements of charge motion in silicon with a single electron transistor: toward individual dopant controlen_US
dc.typeDissertationen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
umi-umd-2982.pdf
Size:
5.44 MB
Format:
Adobe Portable Document Format