Optimal Control of Large Space Structures
dc.contributor.advisor | Baras, John S. | en_US |
dc.contributor.author | Baraka, Mohamed E. | en_US |
dc.contributor.department | ISR | en_US |
dc.contributor.department | CSHCN | en_US |
dc.date.accessioned | 2007-05-23T09:53:14Z | |
dc.date.available | 2007-05-23T09:53:14Z | |
dc.date.issued | 1992 | en_US |
dc.description.abstract | We present a computational spectral factorization method to solve the optimal state feedback control problem for flexible structures with the following features: (1) Mathematically rigorous (2) Wide range of applicability (3) Flexibility of design (4) Fast and Efficient (5) Mini-computer (versus Super- computer) implementation. We apply this method to the following systems: (a) A membrane (b) A string (c) An Euler- Bernoulli/Timoshenko beam models (d) A beam with structural damping and boundary control | en_US |
dc.format.extent | 13578457 bytes | |
dc.format.mimetype | application/pdf | |
dc.identifier.uri | http://hdl.handle.net/1903/5347 | |
dc.language.iso | en_US | en_US |
dc.relation.ispartofseries | ISR; PhD 1992-3 | en_US |
dc.relation.ispartofseries | CSHCN; PhD 1992-1 | en_US |
dc.subject | computer aided design | en_US |
dc.subject | distributed parameter systems | en_US |
dc.subject | linear systems | en_US |
dc.subject | optimal control | en_US |
dc.subject | space structures | en_US |
dc.subject | stability | en_US |
dc.subject | Systems Integration | en_US |
dc.title | Optimal Control of Large Space Structures | en_US |
dc.type | Dissertation | en_US |
Files
Original bundle
1 - 1 of 1