Optimal Control of Large Space Structures

dc.contributor.advisorBaras, John S.en_US
dc.contributor.authorBaraka, Mohamed E.en_US
dc.contributor.departmentISRen_US
dc.contributor.departmentCSHCNen_US
dc.date.accessioned2007-05-23T09:53:14Z
dc.date.available2007-05-23T09:53:14Z
dc.date.issued1992en_US
dc.description.abstractWe present a computational spectral factorization method to solve the optimal state feedback control problem for flexible structures with the following features: (1) Mathematically rigorous (2) Wide range of applicability (3) Flexibility of design (4) Fast and Efficient (5) Mini-computer (versus Super- computer) implementation. We apply this method to the following systems: (a) A membrane (b) A string (c) An Euler- Bernoulli/Timoshenko beam models (d) A beam with structural damping and boundary controlen_US
dc.format.extent13578457 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/1903/5347
dc.language.isoen_USen_US
dc.relation.ispartofseriesISR; PhD 1992-3en_US
dc.relation.ispartofseriesCSHCN; PhD 1992-1en_US
dc.subjectcomputer aided designen_US
dc.subjectdistributed parameter systemsen_US
dc.subjectlinear systemsen_US
dc.subjectoptimal controlen_US
dc.subjectspace structuresen_US
dc.subjectstabilityen_US
dc.subjectSystems Integrationen_US
dc.titleOptimal Control of Large Space Structuresen_US
dc.typeDissertationen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PhD_92-3.pdf
Size:
12.95 MB
Format:
Adobe Portable Document Format