LASER SWITCHED ELECTRON BEAM MODULATION WITH TERAHERTZ APPLICATIONS

dc.contributor.advisorO'Shea, Patrick Gen_US
dc.contributor.authorNeumann, Jonathanen_US
dc.contributor.departmentElectrical Engineeringen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.date.accessioned2005-08-03T14:07:00Z
dc.date.available2005-08-03T14:07:00Z
dc.date.issued2005-04-19en_US
dc.description.abstractThis dissertation describes the exploration of relativistic electron beams modulated at terahertz frequencies using laser driven photoemission. It is divided into three distinct areas: laser beam modulation; electron beam dynamics; and an application of electron beam modulation, the generation of terahertz radiation. The laser modulation portion covers the development of an interferometer system used to control the 266 nm drive laser modulation and the experimental results. The laser pulse is delivered to the photocathode of the accelerator, and is used as a switch that induces an initial electron beam modulation at frequencies between 0.5 and 1.6 terahertz. The electron beam dynamics section includes measurements of the electron beam longitudinal distribution after acceleration to relativistic energy as well as the results obtained from a numerical simulation using the code PARMELA. Both the experimental and numerical results indicate that some of the initial density modulation imposed by the drive laser modulation is retained on the electron beam, although the density modulation that remains, and the frequency of the modulation, falls as a function of increasing charge. Electron beam modulation is achieved between 0.712 and 1.66 terahertz. One application of the deliberate modulation of an electron beam is the generation of coherent radiation, as is seen in many devices ranging from the klystron to the free electron laser. The third section of this work discusses terahertz light generated by transition radiation when a mirror intercepts the modulated electron beam. In this section, transition radiation measured by a bolometric detector is compared to expected results based on the longitudinal electron beam distributions predicted by the PARMELA simulation as well as the measurements from the accelerator system. This dissertation demonstrates that it is possible for an electron beam pre-modulated at the cathode on a subpicosecond time scale to be accelerated to relativistic energy and used for the production of tunable terahertz radiation.en_US
dc.format.extent8735105 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/1903/2437
dc.language.isoen_US
dc.subject.pqcontrolledEngineering, Electronics and Electricalen_US
dc.subject.pqcontrolledPhysics, Radiationen_US
dc.titleLASER SWITCHED ELECTRON BEAM MODULATION WITH TERAHERTZ APPLICATIONSen_US
dc.typeDissertationen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
umi-umd-2305.pdf
Size:
8.33 MB
Format:
Adobe Portable Document Format