TOWARDS HYBRID QUANTUM NETWORKING: INTERFACING ION TRAPS WITH NEUTRAL ATOM SYSTEMS

dc.contributor.advisorQuraishi, Qudsia Sen_US
dc.contributor.advisorSchine, Nathanen_US
dc.contributor.authorRomanoff, Brennanen_US
dc.contributor.departmentPhysicsen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.date.accessioned2025-08-08T12:31:43Z
dc.date.issued2025en_US
dc.description.abstractBuilding large-scale modular quantum computers and quantum networks require scalable high fidelity, high efficiency, and long lifetime quantum memories [1]. Quantum memories are proposed to increase photon-mediated matter-qubit entanglement rates by synchronizing photon interference between network nodes [2]. Hybrid quantum networkingleverages trapped ions’ high fidelity operations and neutral-atoms’ single photon manipulation for increased entanglement rates over single-species quantum networks [3, 4, 5, 6, 7, 8]. Here, we aim to demonstrate flying-qubit photon storage in a neutral-atom system using frequency-converted photons entangled with a trapped barium ion. The quantum information encoded in the flying qubit’s polarization states is reversibly mapped to a multiplexed dual-rail encoding scheme during storage. This work helps enable long-distance quantum networking by synthesizing hybrid components in entanglement distribution [9].en_US
dc.identifierhttps://doi.org/10.13016/ha73-hxod
dc.identifier.urihttp://hdl.handle.net/1903/34364
dc.language.isoenen_US
dc.subject.pqcontrolledQuantum physicsen_US
dc.subject.pqcontrolledAtomic physicsen_US
dc.subject.pquncontrolledAtomic Physicsen_US
dc.subject.pquncontrolledHybrid Systemsen_US
dc.subject.pquncontrolledQuantum Informationen_US
dc.subject.pquncontrolledQuantum Memoryen_US
dc.subject.pquncontrolledQuantum Networkingen_US
dc.titleTOWARDS HYBRID QUANTUM NETWORKING: INTERFACING ION TRAPS WITH NEUTRAL ATOM SYSTEMSen_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Romanoff_umd_0117N_25241.pdf
Size:
6.18 MB
Format:
Adobe Portable Document Format