Matrix-Geometric Solution for Finite Capacity Queues with Phase- Type Distributions.

dc.contributor.authorGun, Leventen_US
dc.contributor.authorMakowski, Armand M.en_US
dc.contributor.departmentISRen_US
dc.date.accessioned2007-05-23T09:39:04Z
dc.date.available2007-05-23T09:39:04Z
dc.date.issued1987en_US
dc.description.abstractThis paper presents a class of Quasi-Birth-and-Death processes with finite state space for which the invariant probability vector is found to admit a matrix-geometric representation. The corresponding rate matrix is given explicitly in terms of the model parameters, and the resulting closed-form expression is proposed as a basis for efficient calculation of the invariant probability vector. The framework presented in this paper provides a unified approach to the study of several well-known queueing system.en_US
dc.format.extent566739 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/1903/4672
dc.language.isoen_USen_US
dc.relation.ispartofseriesISR; TR 1987-167en_US
dc.titleMatrix-Geometric Solution for Finite Capacity Queues with Phase- Type Distributions.en_US
dc.typeTechnical Reporten_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR_87-167.pdf
Size:
553.46 KB
Format:
Adobe Portable Document Format