Thermal Percolation of Antiperovskite Superionic Conductor into Porous MXene Scaffold for High-Capacity and Stable Lithium Metal Battery

dc.contributor.authorLi, Yang
dc.contributor.authorKong, Long
dc.contributor.authorYang, Haochen
dc.contributor.authorLi, Shuai
dc.contributor.authorDeng, Zhi
dc.contributor.authorLi, Shuo
dc.contributor.authorWang, Liping
dc.contributor.authorLee, Jim Yang
dc.contributor.authorZhao, Yusheng
dc.contributor.authorChen, Po-Yen
dc.date.accessioned2023-10-03T13:21:55Z
dc.date.available2023-10-03T13:21:55Z
dc.date.issued2022-10-09
dc.description.abstractLithium metal battery is considered an emerging energy storage technology due to its high theoretical capacity and low electrochemical potential. However, the practical exploitations of lithium metal batteries are not realized because of uncontrollable lithium deposition and severe dendrite formation. Herein, a thermal percolation strategy is developed to fabricate a dual-conductive framework using electronically conductive Ti3C2Tx MXene aerogels (MXAs) and Li2OHCl antiperovskite superionic conductor. By melting Li2OHCl at a low temperature, the molten antiperovskite phase can penetrate the MXA scaffold, resulting in percolative electron/ion pathways. Through density functional theory calculations and electrochemical characterizations, the hybridized lithiophilic (MXA)−lithiophobic (antiperovskite) interfaces can spatially guide the deposition of lithium metals and suppress the growth of lithium dendrites. The symmetric cell with MXA–antiperovskite electrodes exhibits superior cycling stability at high areal capacities of 4 mAh cm−2 over 1000 h. Moreover, the full cell with MXA−antiperovskite anode and high-loading LiFePO4 cathode demonstrates high energy and power densities (415.7 Wh kgcell−1 and 231.0 W kgcell−1) with ultralong lifespans. The thermal percolation of lithium superionic conductor into electronically conductive scaffolds promises an efficient strategy to fabricate dual-conductive electrodes, which benefits the development of dendrite-free lithium metal anodes with high energy/power densities.
dc.description.urihttps://doi.org/10.1002/smtd.202200980
dc.identifierhttps://doi.org/10.13016/dspace/8l3z-udsw
dc.identifier.citationLi, Y., Kong, L., Yang, H., Li, S., Deng, Z., Li, S., Wang, L., Lee, J. Y., Zhao, Y., Chen, P.-Y., Thermal Percolation of Antiperovskite Superionic Conductor into Porous MXene Scaffold for High-Capacity and Stable Lithium Metal Battery. Small Methods 2022, 6, 2200980.
dc.identifier.urihttp://hdl.handle.net/1903/30636
dc.language.isoen_US
dc.publisherWiley
dc.relation.isAvailableAtDigital Repository at the University of Marylanden_us
dc.relation.isAvailableAtUniversity of Maryland (College Park, MD)en_us
dc.relation.isAvailableAtA. James Clark School of Engineeringen_us
dc.relation.isAvailableAtChemical & Biomolecular Engineeringen_us
dc.subjectTiC2T x MXene scaffolds
dc.subjectLi2OHCl antiperovskite superionic conductors
dc.subjectlithium metal anodes
dc.subjectpercolative electron/ion frameworks
dc.titleThermal Percolation of Antiperovskite Superionic Conductor into Porous MXene Scaffold for High-Capacity and Stable Lithium Metal Battery
dc.typeArticle
local.equitableAccessSubmissionNo

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Small Methods - 2022 - Li - Thermal Percolation of Antiperovskite Superionic Conductor into Porous MXene Scaffold for.pdf
Size:
3.01 MB
Format:
Adobe Portable Document Format