Projective Deformations of Triangle Tilings

dc.contributor.advisorGoldman, Williamen_US
dc.contributor.authorLukyanenko, Anton Valerievichen_US
dc.contributor.departmentMathematicsen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.date.accessioned2008-06-20T05:39:15Z
dc.date.available2008-06-20T05:39:15Z
dc.date.issued2008-05-06en_US
dc.description.abstractA hyperbolic triangle group is the group generated by reflections in the sides of a triangle in hyperbolic space. For a given hyperbolic triangle group, we find a one-parameter group of representations into GL(3,$\R$) and associated invariant cones. We show that the representations are faithful and that the cones are sharp. We then apply the results of Guichard to approximate the H\"older continuity of the boundaries of the cones. We conjecture that this may be directly calculated by considering only the Coxeter elements of the triangle group.en_US
dc.format.extent341600 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/1903/8242
dc.language.isoen_US
dc.subject.pqcontrolledMathematicsen_US
dc.subject.pqcontrolledMathematicsen_US
dc.titleProjective Deformations of Triangle Tilingsen_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
umi-umd-5453.pdf
Size:
333.59 KB
Format:
Adobe Portable Document Format