Fourier Transform Inequalities with Measure Weights.

dc.contributor.authorBenedetto, John J.en_US
dc.contributor.authorHeinig, Hansen_US
dc.contributor.departmentISRen_US
dc.date.accessioned2007-05-23T09:40:54Z
dc.date.available2007-05-23T09:40:54Z
dc.date.issued1988en_US
dc.description.abstractFourier transform norm inequalities, ||f^||_(q,u) <= C||f^||_(p, v'). are proved for measure weights MU on moment subspaces of L{^P AND {SUB V}}V(R^n).Density theorems are established to extend the inequalities to all of L{^P and {SUB V}}(R^n). In both cases the conditions for validity are computable. For n > 2,MU and v are radial, and the results are applied to prove spherical restriction theorems which include power weights v(t) = |t|^ALPHA,n/(p' - 1) < ALPHA < (p' + n)/(p' - 1).en_US
dc.format.extent1195629 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/1903/4750
dc.language.isoen_USen_US
dc.relation.ispartofseriesISR; TR 1988-17en_US
dc.titleFourier Transform Inequalities with Measure Weights.en_US
dc.typeTechnical Reporten_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR_88-17.pdf
Size:
1.14 MB
Format:
Adobe Portable Document Format