ATMOSPHERIC CHARACTERIZATION OF GIANT EXOPLANETS IN EXTREME ENVIRONMENTS
dc.contributor.advisor | Deming, Leo D | en_US |
dc.contributor.author | Wilkins, Ashlee Noelle | en_US |
dc.contributor.department | Astronomy | en_US |
dc.contributor.publisher | Digital Repository at the University of Maryland | en_US |
dc.contributor.publisher | University of Maryland (College Park, Md.) | en_US |
dc.date.accessioned | 2018-01-23T06:44:17Z | |
dc.date.available | 2018-01-23T06:44:17Z | |
dc.date.issued | 2017 | en_US |
dc.description.abstract | The study of planets around other stars has entered a science-rich era of characterization, in which detailed information about individual planets can be inferred from observations beyond discovery and confirmation, which only yield bulk properties like mass or radius. Characterization probes more revealing quantities such as chemical abundances, albedo, and temperature/pressure profiles, allowing us to address larger questions of planet formation mechanisms, planetary evolution, and, eventually, presence of biosignature gases. The primary method for characterization of close-in planets is transit spectroscopy. My dissertation comprises transiting exoplanet case studies using the Hubble Space Telescopes Wide-Field Camera-3 (HST/WFC3) as a tool of exoplanet characterization in a near-infrared band dominated by broad water absorption. Much of my efforts went toward a characterization of the WFC3 systematic effects that must be mitigated to extract the incredibly small (tens to 200 parts per million) signals. The case study subjects in this dissertation are CoRoT-2b (in emission), WASP-18b (in transmission and emission), and HATS-7b (in transmission), along with some partial/preliminary analyses of HAT-p-3b and HD 149026b (both in transmission). I also present an analysis of transit timing of WASP-18b with HST and other observatories as another clue to its evolution as a close-in, extremely massive planet purported to be spiraling in to its host star. The five planets range from super Neptunes to Super-Jupiter in size/mass. The observability of such planets – i.e. giants across a continuum of mass/size in extreme local environments close to their respective host stars, – is a unique opportunity to probe planet formation and evolution, as well as atmospheric structures in a high-irradiation environment. This genre of observations reveal insights into aerosols in the atmosphere; clouds and/or hazes can significantly impact atmospheric chemistry and observational signatures, and the community must better understand the phenomenon of aerosols in advance of the next generation of space observatories, including JWST and WFIRST. In conducting these case studies as part of larger collaborations and HST observing campaigns, my work aids in the advancement of exoplanet atmosphere characterization from single, planetby-planet, case studies, to an understanding of the large, hot, gaseous planets as a population. | en_US |
dc.identifier | https://doi.org/10.13016/M2KD1QN0N | |
dc.identifier.uri | http://hdl.handle.net/1903/20383 | |
dc.language.iso | en | en_US |
dc.subject.pqcontrolled | Astronomy | en_US |
dc.subject.pqcontrolled | Astrophysics | en_US |
dc.subject.pqcontrolled | Atmospheric sciences | en_US |
dc.subject.pquncontrolled | Exoplanets | en_US |
dc.subject.pquncontrolled | Gas Giants | en_US |
dc.subject.pquncontrolled | Planetary Science | en_US |
dc.title | ATMOSPHERIC CHARACTERIZATION OF GIANT EXOPLANETS IN EXTREME ENVIRONMENTS | en_US |
dc.type | Dissertation | en_US |
Files
Original bundle
1 - 1 of 1