Using Feedback Control of Microflows to Independently Steer Multiple Particles
Files
Publication or External Link
Date
Advisor
Citation
DRUM DOI
Abstract
In this paper, we show how to combine microfluidics and feedback control to independently steer multiple particles with micrometer accuracy in two spatial dimensions. The particles are steered by creating a fluid flow that carries all the particles from where they are to where they should be at each time step. Our control loop comprises sensing, computation, and actuation to steer particles along user-input trajectories. Particle locations are identified in real-time by an optical system and transferred to a control algorithm that then determines the electrode voltages necessary to create a flow field to carry all the particles to their next desired locations. The process repeats at the next time instant. Our method achieves inexpensive steering of particles by using conventional electroosmotic actuation in microfluidic channels. This type of particle steering does not require optical traps and can noninvasively steer neutral or charged particles and objects that cannot be captured by laser tweezers. (Laser tweezers cannot steer reflective particles, or particles where the index of refraction is lower than (or for more sophisticated optical vortex holographic tweezers does not differ substantially from) that of the surrounding medium.)We show proof-of-concept PDMS devices, having four and eightelectrodes, with control algorithms that can steer one and three particles, respectively. In particular, we demonstrate experimentally that it is possible to use electroosmotic flow to accurately steer and trap multiple particles at once.