Tracing Sources of Atmospheric Methane Using Clumped Isotopes
Files
Related Publication Link
Date
Authors
Advisor
Related Publication Citation
Abstract
Here we use a box model to evaluate how much additional data from Δ12CH2D2 and Δ13CH3D may add to understanding the temporal trend in atmospheric methane, and specifically, whether they may differentiate the contributions of fossil fuel and microbial sources. EDGAR (Emissions Database for Global Atmospheric Research) provides high-quality constraints on methane fluxes from major anthropogenic sources, and different versions of EDGAR reflect uncertainty in understanding of the apportionment of these fluxes over the past few decades. We used two versions of EDGAR and also considered another model of fossil fuel flux to build four different scenarios for anthropogenic source fluxes for our box model. EDGAR does not include wetland emissions and those are calculated (a free variable) to close the flux balance needed by the model. Each scenario broadly follows one of four parameterizations of anthropogenic source fluxes to obtain an estimate of the composition and evolution of Δ12CH2D2 and Δ13CH3D through time.