Analysis of an Adaptive Control Scheme for a Partially Observed Controlled Markov Chain

dc.contributor.authorFernandez-Gaucherand, Emmanuelen_US
dc.contributor.authorArapostathis, Aristotleen_US
dc.contributor.authorMarcus, Steven I.en_US
dc.contributor.departmentISRen_US
dc.date.accessioned2007-05-23T09:49:08Z
dc.date.available2007-05-23T09:49:08Z
dc.date.issued1991en_US
dc.description.abstractWe consider an adaptive finite state controlled Markov chain with partial state information, motivated by a class of replacement problems. We present parameter estimation techniques based on the information available after actions that reset the state to known value are taken. We prove that the parameter estimates converge w.p. 1 to the true (unknown) parameter, under the feedback structure induced by a certainty equivalent adaptive policy. We also show that the adaptive policy is self- optimizing, in a long-run average sense, for any (measurable) sequence of parameter estimates converging w.p. 1 to the true parameter.en_US
dc.format.extent611215 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/1903/5157
dc.language.isoen_USen_US
dc.relation.ispartofseriesISR; TR 1991-111en_US
dc.subjectstochastic systemsen_US
dc.subjectstochastic adaptive controlen_US
dc.subjectMarkov chainsen_US
dc.subjectpartial observationsen_US
dc.subjectSystems Integrationen_US
dc.titleAnalysis of an Adaptive Control Scheme for a Partially Observed Controlled Markov Chainen_US
dc.typeTechnical Reporten_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR_91-111.pdf
Size:
596.89 KB
Format:
Adobe Portable Document Format