Breast Cancer Type 1 Susceptibility Protein is a Critical Regulator of Skeletal Muscle Lipid Metabolism

Loading...
Thumbnail Image

Files

Publication or External Link

Date

2013

Citation

DRUM DOI

Abstract

This dissertation research consists of three investigations in an effort to determine how circulating estrogens affect skeletal muscle lipid metabolism. Loss of circulating estrogens results in significant increases in visceral fat mass and intramuscular lipids (IMCL). These increases in lipid storage are strongly associated with an elevated risk of developing type 2 diabetes. The first investigation examined how the loss of circulating estrogens alters skeletal muscle metabolic function. Ovariectomy (OVX) resulted in significantly higher visceral fat mass and fatty acid sarcolemmal transporter content, which corresponded with elevated IMCL. Skeletal muscle in the OVX group exhibited lower acyl carnitine species suggesting impaired lipid flux through the mitochondria. Lastly, mitochondrial oxygen consumption rates were impaired in OVX skeletal muscle fibers. The results from this study gave rise to a search to identify an estrogen- sensitive mechanism that regulated lipid transport into the mitochondria. Study two determined for the first time that the BRCA1 protein, which is encoded by an

estrogen-sensitive gene, is present and functions as an integral regulator of lipid metabolism in skeletal muscle. Specifically, BRCA1 binds to acetyl CoA carboxylase in response to acute exercise. The in vitro induction of decreases in BRCA1 expression resulted in higher IMCL content, reduced mitochondrial oxygen consumption rates, and elevated reactive oxygen species production. Surprisingly, no differences in BRCA1 content were detected between males and females. In the final study, an inducible, skeletal-muscle specific, BRCA1 KO mouse was developed. Ablation of BRCA1 in skeletal muscle resulted in exercise intolerance and the development of kyphosis. Contrary to our hypothesis, loss of functional BRCA1 in skeletal muscle attenuated the negative metabolic consequences of chronic high fat diet exposure. Collectively, these data provide strong rationale that BRCA1 is an important regulator of skeletal muscle metabolic function and further provide evidence that BRCA1 function is critical in multiple tissues across the body.

Notes

Rights