Non-collision singularities in a planar two-center-two-body problem
Non-collision singularities in a planar two-center-two-body problem
Loading...
Files
Publication or External Link
Date
2013
Authors
Advisor
Citation
DRUM DOI
Abstract
In this work, we study a model of simplified four-body problem called planar two-center-two-body problem. In the plane, we have two fixed centers $Q_1=(-\chi,0), Q_2=(0,0)$ of masses $1$, and two moving bodies $Q_3$ and $Q_4$ of masses $\mu\ll 1$. They interact via Newtonian potential. $Q_3$ is captured by $Q_2$, and $Q_4$ travels back and forth between two centers. Based on a model of Gerver, we prove that there is a Cantor set of initial conditions which lead to solutions of the Hamiltonian system whose velocities are accelerated to infinity within finite time avoiding all early collisions. We consider this model as a simplified model for the planar four-body problem case of the Painlev'{e} conjecture.