Symmetries Shared by the Poincaré Group and the Poincaré Sphere

dc.contributor.authorKim, Young S.
dc.contributor.authorNoz, Marilyn E.
dc.date.accessioned2024-01-30T16:59:51Z
dc.date.available2024-01-30T16:59:51Z
dc.date.issued2013-06-27
dc.description.abstractHenri Poincaré formulated the mathematics of Lorentz transformations, known as the Poincaré group. He also formulated the Poincaré sphere for polarization optics. It is shown that these two mathematical instruments can be derived from the two-by-two representations of the Lorentz group. Wigner’s little groups for internal space-time symmetries are studied in detail. While the particle mass is a Lorentz-invariant quantity, it is shown to be possible to address its variations in terms of the decoherence mechanism in polarization optics.
dc.description.urihttps://doi.org/10.3390/sym5030233
dc.identifierhttps://doi.org/10.13016/dspace/vgxn-gof5
dc.identifier.citationKim, Y.S.; Noz, M.E. Symmetries Shared by the Poincaré Group and the Poincaré Sphere. Symmetry 2013, 5, 233-252.
dc.identifier.urihttp://hdl.handle.net/1903/31610
dc.language.isoen_US
dc.publisherMDPI
dc.relation.isAvailableAtCollege of Computer, Mathematical & Natural Sciencesen_us
dc.relation.isAvailableAtPhysicsen_us
dc.relation.isAvailableAtDigital Repository at the University of Marylanden_us
dc.relation.isAvailableAtUniversity of Maryland (College Park, MD)en_us
dc.subjectPoincaré group
dc.subjectPoincaré sphere
dc.subjectWigner's little groups
dc.subjectparticle mass
dc.subjectdecoherence mechanism
dc.subjecttwo-by-two representations
dc.subjectLorentz group
dc.titleSymmetries Shared by the Poincaré Group and the Poincaré Sphere
dc.typeArticle
local.equitableAccessSubmissionNo

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
symmetry-05-00233.pdf
Size:
344.83 KB
Format:
Adobe Portable Document Format