A Lyapunov Functional for the Cubic Nonlinearity Activator-Inhibitor Model Equation

dc.contributor.authorJusth, Eric W.en_US
dc.contributor.authorKrishnaprasad, Perinkulam S.en_US
dc.contributor.departmentISRen_US
dc.contributor.departmentCDCSSen_US
dc.date.accessioned2007-05-23T10:06:44Z
dc.date.available2007-05-23T10:06:44Z
dc.date.issued1998en_US
dc.description.abstractThe cubic nonlinearity activator-inhibitor model equation is a simpleexample of a pattern-forming system for which strong mathematical resultscan be obtained. Basic properties of solutions and the derivation ofa Lyapunov functional for the cubic nonlinearity model are presented.Potential applications include control of large MEMS actuator arrays.(In Proc. IEEE Conf. Decision and Control, December 16-18, 1998)en_US
dc.format.extent201231 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/1903/5997
dc.language.isoen_USen_US
dc.relation.ispartofseriesISR; TR 1998-36en_US
dc.relation.ispartofseriesCDCSS; TR 1998-5en_US
dc.subjectdistributed parameter systemsen_US
dc.subjectlinear systemsen_US
dc.subjectnonlinear systemsen_US
dc.subjectstabilityen_US
dc.subjectLyapunov functionen_US
dc.subjectnonlinear dynamicsen_US
dc.subjectMEMSen_US
dc.subjectIntelligent Control Systemsen_US
dc.titleA Lyapunov Functional for the Cubic Nonlinearity Activator-Inhibitor Model Equationen_US
dc.typeTechnical Reporten_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR_98-36.pdf
Size:
196.51 KB
Format:
Adobe Portable Document Format