A Lyapunov Functional for the Cubic Nonlinearity Activator-Inhibitor Model Equation
dc.contributor.author | Justh, Eric W. | en_US |
dc.contributor.author | Krishnaprasad, Perinkulam S. | en_US |
dc.contributor.department | ISR | en_US |
dc.contributor.department | CDCSS | en_US |
dc.date.accessioned | 2007-05-23T10:06:44Z | |
dc.date.available | 2007-05-23T10:06:44Z | |
dc.date.issued | 1998 | en_US |
dc.description.abstract | The cubic nonlinearity activator-inhibitor model equation is a simpleexample of a pattern-forming system for which strong mathematical resultscan be obtained. Basic properties of solutions and the derivation ofa Lyapunov functional for the cubic nonlinearity model are presented.Potential applications include control of large MEMS actuator arrays.(In Proc. IEEE Conf. Decision and Control, December 16-18, 1998) | en_US |
dc.format.extent | 201231 bytes | |
dc.format.mimetype | application/pdf | |
dc.identifier.uri | http://hdl.handle.net/1903/5997 | |
dc.language.iso | en_US | en_US |
dc.relation.ispartofseries | ISR; TR 1998-36 | en_US |
dc.relation.ispartofseries | CDCSS; TR 1998-5 | en_US |
dc.subject | distributed parameter systems | en_US |
dc.subject | linear systems | en_US |
dc.subject | nonlinear systems | en_US |
dc.subject | stability | en_US |
dc.subject | Lyapunov function | en_US |
dc.subject | nonlinear dynamics | en_US |
dc.subject | MEMS | en_US |
dc.subject | Intelligent Control Systems | en_US |
dc.title | A Lyapunov Functional for the Cubic Nonlinearity Activator-Inhibitor Model Equation | en_US |
dc.type | Technical Report | en_US |
Files
Original bundle
1 - 1 of 1