INCREMENTAL PREDICTION OF SENTENCE-FINAL VERBS WITH ATTENTIVE RECURRENT NEURAL NETWORKS

dc.contributor.advisorBoyd-Graber, Jordanen_US
dc.contributor.advisorBabadi, Betashen_US
dc.contributor.authorLI, Wenyanen_US
dc.contributor.departmentElectrical Engineeringen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.date.accessioned2018-09-19T05:31:14Z
dc.date.available2018-09-19T05:31:14Z
dc.date.issued2018en_US
dc.description.abstractSentence-final verb prediction has garnered attention both in computational lin- guistics and psycholinguistics. It is indispensable for understanding human processing of verb-final languages. More recently, it has been used for computational approaches to simultaneous interpretation, i.e. translation in real-time, from verb-final to verb-medial languages. While previous approaches use classical statistical methods including pattern- matching rules, n-gram language models, or a logistic regression with linguistic features, we introduce an attention-based neural model, Attentive Neural Verb Inference for Incre- mental Language (ANVIIL), to incrementally predict final verbs on incomplete sentences. Our approach better predicts the final verbs in Japanese and German and provides more interpretable explanations of why those verbs are selected.en_US
dc.identifierhttps://doi.org/10.13016/M2NS0M219
dc.identifier.urihttp://hdl.handle.net/1903/21412
dc.language.isoenen_US
dc.subject.pqcontrolledComputer scienceen_US
dc.subject.pqcontrolledTranslation studiesen_US
dc.subject.pqcontrolledLinguisticsen_US
dc.subject.pquncontrolledRecurrent neural networksen_US
dc.subject.pquncontrolledSimultaneous machine translationen_US
dc.subject.pquncontrolledSOV languagesen_US
dc.subject.pquncontrolledVerb predictionen_US
dc.titleINCREMENTAL PREDICTION OF SENTENCE-FINAL VERBS WITH ATTENTIVE RECURRENT NEURAL NETWORKSen_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
LI_umd_0117N_19412.pdf
Size:
1.18 MB
Format:
Adobe Portable Document Format