The Virtual Filament Model

dc.contributor.advisorKrishnaprasad, P.S.en_US
dc.contributor.authorKlemm, Sandy Leeen_US
dc.contributor.departmentElectrical Engineeringen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.date.accessioned2006-09-12T05:57:43Z
dc.date.available2006-09-12T05:57:43Z
dc.date.issued2006-08-04en_US
dc.description.abstractIn the present work, a framework is proposed for studying autonomous agents which interact locally yet effect a globally coherent behavior. This problem of locally induced organization is ubiquitous in decentralized multi-robot environments and various micro- and macroscopic biological contexts (e.g., cellular chemotaxis, avian flocking). In analogy with the local equations of motion which arise in various elastic rod and vorticity theories, we pursue this question in a continuum setting where agents are uniquely associated with material points of a virtual filament. The governing dynamics for this filament are chosen so that an established set of control objectives is achieved. The appropriate configuration space of continua is shown to be an infinite dimensional Hilbert Lie group admitting a separable topology. A class of filament models is studied in a Lagrangian formalism on this manifold, leading to a natural curvature feedback law.en_US
dc.format.extent400801 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/1903/3872
dc.language.isoen_US
dc.subject.pqcontrolledEngineering, Electronics and Electricalen_US
dc.subject.pqcontrolledMathematicsen_US
dc.subject.pqcontrolledPhysics, Generalen_US
dc.subject.pquncontrolledLagrange D'Alembert mechanicsen_US
dc.subject.pquncontrolleddifferential geometryen_US
dc.subject.pquncontrolledHilbert Lie group theoryen_US
dc.subject.pquncontrolledinfinite dimensional manifold theoryen_US
dc.subject.pquncontrollednonlinear dynamical systemsen_US
dc.subject.pquncontrolledvariational calculusen_US
dc.titleThe Virtual Filament Modelen_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
umi-umd-3719.pdf
Size:
391.41 KB
Format:
Adobe Portable Document Format