Automatic Differentiation for Iterative Process and Its Applications in Network Performance Analysis

dc.contributor.advisorBaras, John S.en_US
dc.contributor.authorLiu, Mingyan D.en_US
dc.contributor.departmentISRen_US
dc.contributor.departmentCSHCNen_US
dc.date.accessioned2007-05-23T10:05:21Z
dc.date.available2007-05-23T10:05:21Z
dc.date.issued1997en_US
dc.description.abstractIn this paper we focus on the application of automatic differentiation (AD)technique on iterative processes. We review some of the results on theconvergence of general iterative processes and the convergence of thederivative code of such iterative processes. We are especially interestedin a class of fixed point iteration problems and we extended some of thoseresults to discuss this class of problems. Finally we apply an AD packageADIC to a network performance evaluation problem for numerical experimentsto get sensitivities of network blocking probabilities w.r.t. networkoffered traffic load.en_US
dc.format.extent232489 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/1903/5930
dc.language.isoen_USen_US
dc.relation.ispartofseriesISR; TR 1997-93en_US
dc.relation.ispartofseriesCSHCN; TR 1997-35en_US
dc.subjectnetwork performance analysisen_US
dc.subjectautomatic differentiationen_US
dc.subjectiterative processen_US
dc.subjectconvergenceen_US
dc.titleAutomatic Differentiation for Iterative Process and Its Applications in Network Performance Analysisen_US
dc.typeTechnical Reporten_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
TR_97-93.pdf
Size:
227.04 KB
Format:
Adobe Portable Document Format