Diverse Video Generation

dc.contributor.advisorShrivastava, Abhinaven_US
dc.contributor.authorShrivastava, Gauraven_US
dc.contributor.departmentComputer Scienceen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.date.accessioned2021-07-14T05:38:18Z
dc.date.available2021-07-14T05:38:18Z
dc.date.issued2021en_US
dc.description.abstractGenerating future frames given a few context (or past) frames is a challengingtask. It requires modeling the temporal coherence of videos and multi-modality in terms of diversity in the potential future states. Current variational approaches for video generation tend to marginalize over multi-modal future outcomes. Instead, in this thesis, we propose to explicitly model the multi-modality in the future outcomes and leverage it to sample diverse futures. Our approach, Diverse Video Generator, uses a Gaussian Process (GP) to learn priors on future states given the past and maintains a probability distribution over possible futures given a particular sample. In addition, we leverage the changes in this distribution overtime to control the sampling of diverse future states by estimating the end of on-going sequences. That is, we use the variance of GP over the output function space to trigger a change in an action sequence. We achieve state-of-the-art results on diverse future frame generation in terms of reconstruction quality and diversity of the generated sequencesen_US
dc.identifierhttps://doi.org/10.13016/mcxj-xwt3
dc.identifier.urihttp://hdl.handle.net/1903/27482
dc.language.isoenen_US
dc.subject.pqcontrolledArtificial intelligenceen_US
dc.subject.pqcontrolledComputer scienceen_US
dc.subject.pquncontrolledComputer Visionen_US
dc.subject.pquncontrolledGaussian Processen_US
dc.subject.pquncontrolledVideo Generationen_US
dc.titleDiverse Video Generationen_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Shrivastava_umd_0117N_21635.pdf
Size:
6.65 MB
Format:
Adobe Portable Document Format