Classical Invariants for Principal Series and Isomorphisms of Root Data

dc.contributor.advisorAdams, Jeffrey Den_US
dc.contributor.authorMcLean, II, Robert Alexanderen_US
dc.contributor.departmentMathematicsen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.date.accessioned2016-09-08T05:31:12Z
dc.date.available2016-09-08T05:31:12Z
dc.date.issued2016en_US
dc.description.abstractWe develop some new techniques to calculate the Schur indicator for self-dual irreducible Langlands quotients of the principal series representations. Using these techniques we derive some new formulas for the Schur indicator and the real-quaternionic indicator. We make progress towards developing an algorithm to decide whether or not two root data are isomorphic. When the derived group has cyclic center, we solve the isomorphism problem completely. An immediate consequence is a clean and precise classification theorem for connected complex reductive groups whose derived groups have cyclic center.en_US
dc.identifierhttps://doi.org/10.13016/M2H21C
dc.identifier.urihttp://hdl.handle.net/1903/18677
dc.language.isoenen_US
dc.subject.pqcontrolledMathematicsen_US
dc.subject.pquncontrolledreal-quaternionic indicatoren_US
dc.subject.pquncontrolledroot dataen_US
dc.subject.pquncontrolledSchur indicatoren_US
dc.titleClassical Invariants for Principal Series and Isomorphisms of Root Dataen_US
dc.typeDissertationen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
McLeanII_umd_0117E_17330.pdf
Size:
581.7 KB
Format:
Adobe Portable Document Format