On the Use of Integer Programming Models in AI Planning

Loading...
Thumbnail Image

Files

TR_99-84.pdf (186.9 KB)
No. of downloads: 1370

Publication or External Link

Date

1999

Advisor

Citation

DRUM DOI

Abstract

Recent research has shown the promise of using propositional reasoning and search to solve AI planning problems. In this paper, we further explore this area by applying Integer Programming to solve AI planning problems. The application of Integer Programming to AI planning has a potentially significant advantage, as it allows quite naturally for the incorporation of numerical constraints and objectives into the planning domain. Moreover, the application of Integer Programming to AI planning addresses one of the challenges in propositional reasoning posed by Kautz and Selman, who conjectured that the principal technique used to solve Integer Programs---the linear programming (LP) relaxation---is not useful when applied to propositional search. We discuss various IP formulations for the class of planning problems based on the STRIPS paradigm. Our main objective is to show that a carefully chosen IP formulation significantly improves the "strength" of the LP relaxation, and that the resultant LPs are useful in solving the IP and the associated planning problems. Our results clearly show the importance of choosing the "right" representation, and more generally the promise of using Integer Programming techniques in the AI planning domain.

Notes

Rights