Multi-scale problems on collective dynamics and image processing

dc.contributor.advisorTadmor, Eitanen_US
dc.contributor.authorTan, Changhuien_US
dc.contributor.departmentApplied Mathematics and Scientific Computationen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.date.accessioned2014-10-11T05:47:01Z
dc.date.available2014-10-11T05:47:01Z
dc.date.issued2014en_US
dc.description.abstractMulti-scale problems appear in many contexts. In this thesis, we study two dif- ferent subjects involving multi-scale problems: (i) collective dynamics, and (ii) image processing. For collective dynamics, we concentrate on flocking models, in particular, Cucker-Smale and Motsch-Tadmor systems. These models characterize the emergent behaviors of self-organized dynamics. We study flocking systems in three different scales, from microscopic agent-based models, through mesoscopic kineitc discriptions, to macroscopic fluid systems. Global existence theories are developed for all three scales, with the proof of asymptotic flocking behaviors. In the macroscopic level, a critical threhold phenomenon is addressed to obtain global regularity. Similar idea is implemented to other fluid systems as well, like Euler-Poisson equations. In the kinetic level, a discontinuous Galerkin method is introduced to overcome the numerical difficulty due to the precence of δ -singularity. For image processing, we apply the idea of multi-scale image representation to construct uniformly bounded solutions for div U = F. Despite the fact that the equation is simple and linear, it is suprisingly true that its bounded solution can not be constructed through a linear procedure. In particular, the Holmholtz solution is not always bounded. A hierarchical construction of the bounded solution of the equation is proposed, borrowing the idea from image processing. We also present a numerical implementation to deal with the highly nonlinear construction procedure. Solid numerical result verifies that the constructed solution is indeed uniformly bounded.en_US
dc.identifierhttps://doi.org/10.13016/M2WG6T
dc.identifier.urihttp://hdl.handle.net/1903/15757
dc.language.isoenen_US
dc.subject.pqcontrolledApplied mathematicsen_US
dc.subject.pquncontrolledcollective dynamicsen_US
dc.subject.pquncontrolledflockingen_US
dc.subject.pquncontrolledimage processingen_US
dc.titleMulti-scale problems on collective dynamics and image processingen_US
dc.typeDissertationen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Tan_umd_0117E_15478.pdf
Size:
1.91 MB
Format:
Adobe Portable Document Format