Statistical Modality Tagging from Rule-based Annotations and Crowdsourcing

dc.contributor.authorPrabhakaran, Vinodkumar
dc.contributor.authorBloodgood, Michael
dc.contributor.authorDiab, Mona
dc.contributor.authorDorr, Bonnie
dc.contributor.authorLevin, Lori
dc.contributor.authorPiatko, Christine
dc.contributor.authorRambow, Owen
dc.contributor.authorVan Durme, Benjamin
dc.date.accessioned2014-07-17T17:29:32Z
dc.date.available2014-07-17T17:29:32Z
dc.date.issued2012-07-13
dc.description.abstractWe explore training an automatic modality tagger. Modality is the attitude that a speaker might have toward an event or state. One of the main hurdles for training a linguistic tagger is gathering training data. This is particularly problematic for training a tagger for modality because modality triggers are sparse for the overwhelming majority of sentences. We investigate an approach to automatically training a modality tagger where we first gathered sentences based on a high-recall simple rule-based modality tagger and then provided these sentences to Mechanical Turk annotators for further annotation. We used the resulting set of training data to train a precise modality tagger using a multi-class SVM that delivers good performance.en_US
dc.identifier.citationVinodkumar Prabhakaran, Michael Bloodgood, Mona Diab, Bonnie Dorr, Lori Levin, Christine D. Piatko, Owen Rambow, and Benjamin Van Durme. 2012. Statistical modality tagging from rule-based annotations and crowdsourcing. In Proceedings of the ACL-2012 Workshop on Extra-Propositional Aspects of Meaning in Computational Linguistics (ExProM-2012), pages 57-64, Jeju, Republic of Korea, July. Association for Computational Linguistics.en_US
dc.identifier.urihttp://hdl.handle.net/1903/15543
dc.language.isoen_USen_US
dc.publisherAssociation for Computational Linguisticsen_US
dc.relation.isAvailableAtCenter for Advanced Study of Language
dc.relation.isAvailableAtDigitial Repository at the University of Maryland
dc.relation.isAvailableAtUniversity of Maryland (College Park, Md)
dc.subjectcomputer scienceen_US
dc.subjectartificial intelligenceen_US
dc.subjectstatistical methodsen_US
dc.subjectmachine learningen_US
dc.subjectcomputational linguisticsen_US
dc.subjectnatural language processingen_US
dc.subjecthuman language technologyen_US
dc.subjectsemanticsen_US
dc.subjectmodalityen_US
dc.subjectcrowdsourcingen_US
dc.subjectMechanical Turken_US
dc.subjectSupport Vector Machinesen_US
dc.subjectcost-weighted Support Vector Machinesen_US
dc.subjectannotation confidenceen_US
dc.subjectstatistical modality taggingen_US
dc.subjectautomatic modality taggingen_US
dc.titleStatistical Modality Tagging from Rule-based Annotations and Crowdsourcingen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
statisticalModalityTaggingExProM2012.pdf
Size:
125.48 KB
Format:
Adobe Portable Document Format