Spacial and Temporal Variations in 36CI Deposition in the Northern United States

Thumbnail Image

Files

1552326.pdf (37.34 MB)
No. of downloads: 19

Publication or External Link

Date

1994

Citation

Abstract

Chlorine-36, a cosmogenic radioisotope, has been developed for use as a tracer in hydrological systems. The deposition of atmospheric 36Cl, although of primary importance to hydrological applications, has not been well studied. To begin to address this problem, 36Cl has been measured in monthly, wet-only, precipitation samples collected from February, 1991, to January, 1993, at the Elms Environmental Education Center in St. Mary's County, Maryland. In addition, bulk deposition samples were collected over a 1 y period at seven sites across the Northern United States and analyzed for 36CI. The mean, wet-only 36Cl/Cl ratio for the 2 y sampling period is 68±19 (x10 -15), and the mean 36 CI concentration is 1.2±0. 1 (x10 6) atoms/L. The 36Cl wet deposition flux data reveal a distinct seasonal deposition pattern, with peaks occurring in March and April. This pattern is attributed to stratospheric/ tropospheric exchange. The mean 36Cl wet deposition flux is 38.2±5 atoms/m2s. Comparison between wet-only and bulk deposition samples indicates that the difference accounts for approximately 25% of the total 36Cl deposition flux at the Elms site. A new model, using 90Sr to predict the 36CI deposition pattern, is developed to predict 36Cl/Cl ratios across the United States. Chlorine-36/Cl ratios in bulk deposition samples collected across the northern United States agree well with the model predictions. A mean global 36Cl production rate of approximately 28 to 38 atoms/m2s is indicated by these samples. A comparison between 36Cl concentrations in the Aquia and Magothy aquifers is southern Maryland and bulk deposition samples collected at the Elms, MD, site indicated that modern precipitation can account for the 36Cl content in the youngest water in these aquifers. Surface water samples from the Susquehanna River basin reveal 36 Cl and stable chloride concentrations an order of magnitude higher than in bulk deposition samples collected at State College, PA. The source of excess 36Cl in the Susquehanna is not known. Possible explanations include 'bomb-pulse' 36Cl and in-situ 36CI production in surface rocks.

Notes

Rights