INVESTIGATION INTO THE ROLE OF UVR8 IN BALANCING GROWTH AND ACCLIMATION TO UV-B RADIATION IN NATURAL AND TRANSGENIC POPULUS VARIANTS

dc.contributor.advisorEisenstein, Edwarden_US
dc.contributor.advisorSullivan, Josephen_US
dc.contributor.authorWong, Tiffany Marieen_US
dc.contributor.departmentPlant Science and Landscape Architecture (PSLA)en_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.date.accessioned2022-02-02T06:35:52Z
dc.date.available2022-02-02T06:35:52Z
dc.date.issued2021en_US
dc.description.abstractResearch on woody plants offers promise for the development of next-generation biofuel feedstocks with reduced lignin recalcitrance and enhanced saccharification for ethanol production. Natural variants of Populus trichocarpa with diverse lignin content and saccharification differences, and transgenic Populus deltoides constructed for reduced lignin levels for improved cellulose extraction, offer clues to enhance biofuel production but with a tradeoff to overall fitness and biomass. One concern of engineering lignin relates to the protection of plants against environmental stress such as UV-B radiation. Secondary metabolite biosynthesis initiated by UV-B, particularly phenylpropanoids (lignin precursors) and flavonoids, plays an important role in managing and protection of UV stress. Genetic modifications affecting the production of these compounds may have significant physiological consequences. Thus, the goal of this research was to develop a model for biosynthetic compensation of low-lignin Populus to UV-B stress. The effect of UV-B on Populus was evaluated by spectroscopic and metabolomic measurements on leaves. UV-B promoted shifts in physiological and metabolomic responses of natural and transgenic Populus with varying levels of lignin were complex, reflecting compensation from variety of biosynthetic alterations. Therefore, the impact of modulating the expression of the photoreceptor, UVR8, in regulating the response of Populus to UV-B was pursued. Modulation of UVR8 expression in Populus hybrid was achieved by constructing transgenic plants using CRISPR and RNAi, in wild-type, and an RNAi-constructed cinnamyl alcohol dehydrogenase knockdown line. UV-B response of UVR8 modulated Populus indicated that flavonoids were upregulated in UVR8 overexpression lines, and that in a CAD knockdown background, these effects were slightly enhanced. Salicylates were upregulated in UVR8 knockout poplars, suggesting metabolic flux in the pathway, but little difference was seen relative to wild-type plants in CAD lines, and UV-B treatment had little effect. An interesting and unexpected finding was that UVR8 modulated Populus exhibited more rapid growth than wild-type plants. The findings underscore the key role of UVR8 in synchronizing protective metabolic responses to UV-B and suggest an additional function of the photoreceptor in regulating growth and development of Populus through shifts in the chemical equilibria of UVR8 monomers and dimers and interactions with other regulatory factors.en_US
dc.identifierhttps://doi.org/10.13016/ftvj-cq8x
dc.identifier.urihttp://hdl.handle.net/1903/28349
dc.language.isoenen_US
dc.subject.pqcontrolledPlant sciencesen_US
dc.subject.pqcontrolledMolecular biologyen_US
dc.subject.pqcontrolledBiologyen_US
dc.subject.pquncontrolledCRISPRen_US
dc.subject.pquncontrolledGene-editingen_US
dc.subject.pquncontrolledMetabolomicsen_US
dc.subject.pquncontrolledPlant biologyen_US
dc.subject.pquncontrolledPopulusen_US
dc.subject.pquncontrolledUV-B radiationen_US
dc.titleINVESTIGATION INTO THE ROLE OF UVR8 IN BALANCING GROWTH AND ACCLIMATION TO UV-B RADIATION IN NATURAL AND TRANSGENIC POPULUS VARIANTSen_US
dc.typeDissertationen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Wong_umd_0117E_22013.pdf
Size:
26.49 MB
Format:
Adobe Portable Document Format