Precise Estimates for Weight Functions Satisfying a Weighted Fourier Transform Inequality

dc.contributor.advisorJohnson, Raymond L.en_US
dc.contributor.authorTull, Hatshepsitu S. H.en_US
dc.contributor.departmentApplied Mathematics and Scientific Computationen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.date.accessioned2007-09-28T15:01:00Z
dc.date.available2007-09-28T15:01:00Z
dc.date.issued2007-08-13en_US
dc.description.abstractThis paper shows that for a given weighted Fourier transform inequality, certain weight functions will satisfy it. The work done in my paper is a continuation of similar ideas found in Yuki Yayama's thesis. She proved that a nonessentially increasing weight function w with a finite number of zeros can satisfy a given weighted Fourier transform inequality. Her proof includes estimations of distribution functions, the sine and the arcsine functions both near zero. My paper provides another proof by using precise values of distribution functions certain approximations used only when necessary.en_US
dc.format.extent284693 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/1903/7319
dc.language.isoen_US
dc.subject.pqcontrolledMathematicsen_US
dc.titlePrecise Estimates for Weight Functions Satisfying a Weighted Fourier Transform Inequalityen_US
dc.typeThesisen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
umi-umd-4723.pdf
Size:
278.02 KB
Format:
Adobe Portable Document Format