Transfer of Representations and Orbital Integrals of Inner Forms of GL_n

dc.contributor.advisorHaines, Thomas J.en_US
dc.contributor.authorCohen, Jonathanen_US
dc.contributor.departmentMathematicsen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.date.accessioned2017-06-22T06:16:00Z
dc.date.available2017-06-22T06:16:00Z
dc.date.issued2016en_US
dc.description.abstractLet $F$ be a nonarchimedean local field and $D$ an $F$-central division algebra. We characterize the Local Langlands Correspondence (LLC) for inner forms of $GL_n$ over $F$ via the Jacquet-Langlands Correspondence and compatibility with the Langlands Classification. We show that LLC satisfies a natural compatibility with parabolic induction and characterize the LLC for inner forms as a unique family of bijections $\Pi(GL_r(D)) \rightarrow \Phi(GL_r(D))$ for each $r$, (for a fixed $D$) satisfying certain properties. We construct a surjective map of Bernstein centers $\mathfrak{Z}(GL_n(F))\to \mathfrak{Z}(GL_r(D))$ and show this produces pairs of matching distributions in the sense of \cite{SBC}. Finally, we construct explicit Iwahori-biinvariant matching functions for unit elements in the parahoric Hecke algebras of $GL_r(D)$, and thereby produce many explicit pairs of matching functions.en_US
dc.identifierhttps://doi.org/10.13016/M2CZ8R
dc.identifier.urihttp://hdl.handle.net/1903/19450
dc.language.isoenen_US
dc.subject.pqcontrolledMathematicsen_US
dc.subject.pquncontrolledGL_nen_US
dc.subject.pquncontrolledInner Formsen_US
dc.subject.pquncontrolledLocal Langlandsen_US
dc.titleTransfer of Representations and Orbital Integrals of Inner Forms of GL_nen_US
dc.typeDissertationen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Cohen_umd_0117E_17959.pdf
Size:
379.31 KB
Format:
Adobe Portable Document Format