FEEDBACK-CONTROLLED BIOELECTRONIC HYBRID SYSTEM ENABLED BY ELECTROGENETIC CRISPR

Loading...
Thumbnail Image

Files

Wang_umd_0117E_23304.pdf (7.24 MB)
(RESTRICTED ACCESS)
No. of downloads:

Publication or External Link

Date

2023

Citation

Abstract

With the rise of concepts like the “internet of things” and the advances in electronic technologies, our lives have now been occupied with smart devices that easily communicate with one another. These devices, however, lack the ability to freely exchange information with the world of biology, since electronics and biology possess very different communication modalities. Recently, the field of “electrogenetics” was introduced by enlisting redox mediators like hydrogen peroxide as a novel signaling medium to facilitate the connection between electronics with biology. In this dissertation, we expanded the electrogenetic framework and established a complete network of Bio-Nano Things, which collectively allowed automated, algorithm-based feedback control of electrogenetic CRISPR activity. First, we engineered the abiotic/biotic interface in order to improve information transfer between electronics and biological systems. Inspired by nature, we created an “artificial biofilm” that immobilized living cells on the surface of the electrode by electrochemically assembling bacteria and thiolated polyethylene glycol (PEG-SH) to form a thin film. We then endowed the PEG-SH hydrogel with redox capabilities via conjugation to generate an interactive material that can autonomously synthesize hydrogen peroxide to initiate communication with a bacterial population. Additionally, a polycysteine-tagged Streptococcal protein G was introduced for PEG-SH hydrogel surface decoration to enable the recognition of cells and other biological molecules. Next, we developed oxyRS-based electrogenetic CRISPR to broaden the bandwidth of electrochemical signaling, allowing multiplexed transcriptional regulation on various genetic targets. These include two crucial quorum sensing genes that controlled the relay of electrochemical signals to a broader yet selective audience of microbial populations through quorum sensing communication. We then integrated the engineered interface with eCRISPR-mediated transcriptional regulation to present “Biospark”, a full electrogenetic system including custom-made hardware and software, for algorithm-governed automated control of gene expression. Finally, we demonstrated a network of Bio-Nano Things by connecting the Biospark system with another custom bio-electrochemical device and even users to achieve remote feedback control of eCRISPR activity and more importantly, multidirectional communication between living systems regardless of physical distance. Together, we believe this work represents a huge leap toward making “smarter” devices and networks that can seamlessly guide biological processes with electronic input and can spawn various applications in the fields of biotechnology.

Notes

Rights