MONTE CARLO SIMULATIONS OF BRILLOUIN SCATTERING IN TURBID MEDIA

Loading...
Thumbnail Image

Files

Publication or External Link

Date

2023

Citation

Abstract

Brillouin microscopy is a non-invasive, label-free optical elastography method for measuring mechanical properties of cells. It provides information on the longitudinal modulus and viscosity of a medium, which can be indicators of traumatic brain injury, cancerous tumors, or fibrosis. All optical techniques face difficulties imaging turbid media, and Monte Carlo simulations are considered the gold-standard to model these scenarios. Brillouin microscopy adds a unique challenge to this problem due to the angular dependence of the scattering event. This thesis extends a traditional Monte Carlo simulation software by adding the capability to simulate Brillouin scattering in turbid media, which provides a method to test strategies to mitigate the effects of multiple elastic scattering without the time and cost associated with physical experiments. Experimental results have shown potential methods to alleviate the problems caused by multiple elastic scattering, and this thesis will verify the simulation results against the experimental findings.

Notes

Rights