Simulator Development for a Spatially Controllable Chemical Vapor Deposition System
Files
Publication or External Link
Date
Advisor
Citation
DRUM DOI
Abstract
Most conventional chemical vapor deposition systems do not have the spatial actuation and sensing capabilities necessary to control deposition uniformity, or to intentionally induce nonuniform deposition patterns for single-wafer combinatorial CVD experiments. In an effort to address this limitation, we began a research program at the University of Maryland focusing on the development of a novel CVD reactor system that can explicitly control the (2-dimensional) spatial profile of gas-phase chemical composition across the wafer surface.
This reactor is based on a novel segmented showerhead design in which gas precursor composition can be individually controlled in the gas fed to each segment. Because the exhaust gas is recirculated up through the showerhead though the individual segments, the gas flow pattern created eliminates convective mass transfer between the segment regions. The effect of this design is a CVD system in which across-wafer composition gradients can be accurately predicted and controlled.
This paper discusses the development of a simulator for a three-segment prototype that has recently been constructed as a modification to an Ulvac ERA1000 CVD cluster tool. A preliminary set of experiments has been performed to evaluate the performance of the prototype in depositing tungsten films for a range of wafer/showerhead spacing and segment gas compositions. We discuss the simulation approach taken to developing the simulator for this system focusing on a one-dimensional simulation of transport through the segments and exhaust mixing region, a model valid in the limit of close showerhead/wafer spacing. The use of simulation in the prototype system design, interpreting experimental data, and its ultimate use in controlling the CVD process to achieve true programmable CVD operation all will be discussed. Further information can be found at the project website, http://www.isr.umd.edu/Labs/CACSE/research/progrxr