On Relative Moduli Spaces of Two-Dimensional Sheaves on Threefolds

dc.contributor.advisorGholampour, Aminen_US
dc.contributor.authorKim, Dohoonen_US
dc.contributor.departmentMathematicsen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.date.accessioned2026-01-27T06:33:54Z
dc.date.issued2025en_US
dc.description.abstractIn the study of degeneration methods for moduli problems, Li introduced expanded pairs and expanded degenerations in order to construct proper relative moduli spaces. These notions play a crucial role in the work of Li on relative Gromov-Witten theory, and later on, in the work of Li and Wu on the construction of good degenerations of Quot schemes and the development of degeneration formulas for Donaldson-Thomas invariants of ideal sheaves. Using these constructions, as well as the properties of Quot schemes and the moduli space of semistable sheaves, we construct the relative moduli space of two-dimensional Gieseker-stable sheaves on threefolds and show that it satisfies both the existence and uniqueness parts of the valuative criterion for properness.en_US
dc.identifierhttps://doi.org/10.13016/l2q6-21zw
dc.identifier.urihttp://hdl.handle.net/1903/35025
dc.language.isoenen_US
dc.subject.pqcontrolledMathematicsen_US
dc.subject.pquncontrolledAlgebraic Geometryen_US
dc.subject.pquncontrolledDegeneration Methodsen_US
dc.subject.pquncontrolledDonaldson-Thomas Theoryen_US
dc.subject.pquncontrolledModuli Spacesen_US
dc.subject.pquncontrolledStable Sheavesen_US
dc.titleOn Relative Moduli Spaces of Two-Dimensional Sheaves on Threefoldsen_US
dc.typeDissertationen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Kim_umd_0117E_25601.pdf
Size:
767.28 KB
Format:
Adobe Portable Document Format