Speed and Accuracy Tests of the Variable-Step Störmer-Cowell Integrator
dc.contributor.author | Berry, Matthew M. | |
dc.contributor.author | Healy, Liam M. | |
dc.date.accessioned | 2005-12-08T19:07:39Z | |
dc.date.available | 2005-12-08T19:07:39Z | |
dc.date.issued | 2005-02 | |
dc.description | See also the dissertation of Matt Berry http://scholar.lib.vt.edu/theses/available/etd-04282004-071227/. | en |
dc.description.abstract | The variable-step Stormer-Cowell integrator is a non-summed, double-integration multi-step integrator derived in variable-step form. The method has been implemented with a Shampine-Gordon style error control algorithm that uses an approximation of the local error at each step to choose the step size for the subsequent step. In this paper, the variable-step Stormer-Cowell method is compared to several other multi-step integrators, including the fixed-step Gauss-Jackson method, the Gauss-Jackson method with s-integration, and the variable-step single-integration Shampine- Gordon method, in both orbit propagation and orbit determination. The results show the variable-step Stormer-Cowell method is comparable with Gauss-Jackson using s-integration, except in high drag cases where the variable-step Stormer-Cowell method has an advantage in speed and accuracy. | en |
dc.format.extent | 325291 bytes | |
dc.format.extent | 418173 bytes | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | application/pdf | |
dc.identifier.citation | in Vallado, Gabor, Desai, eds. Spaceflight Mechanics 2005: Proceedings of the AAS/AIAA 15th Space Flight Mechanics Meetings held Jan. 23-27, 2005, Copper Mountain, Colorado, pp. 1167 -1182 | en |
dc.identifier.isbn | 087703-520-2 | |
dc.identifier.uri | http://hdl.handle.net/1903/3027 | |
dc.language.iso | en_US | en |
dc.publisher | Univelt, Inc. | en |
dc.relation.isAvailableAt | A. James Clark School of Engineering | en_us |
dc.relation.isAvailableAt | Aerospace Engineering | en_us |
dc.relation.isAvailableAt | Digital Repository at the University of Maryland | en_us |
dc.relation.isAvailableAt | University of Maryland (College Park, Md.) | en_us |
dc.subject | numerical integration | en |
dc.subject | orbit propagation | en |
dc.subject | Störmer-Cowell | en |
dc.subject | Shampine-Gordon | en |
dc.subject | second order differential equation | en |
dc.title | Speed and Accuracy Tests of the Variable-Step Störmer-Cowell Integrator | en |
dc.type | Article | en |