Reversible jump Hidden Markov Model Analysis of Longitudinal Data with Medical Applications

dc.contributor.advisorWedel, Michelen_US
dc.contributor.advisorSmith, Paul Jen_US
dc.contributor.authorYAN, JINen_US
dc.contributor.departmentMathematical Statisticsen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.description.abstractLongitudinal datasets that contain the same variables at multiple time occasions from a given subject are frequently observed in current medical studies. Research has been done to develop method to analyze such data and make meaningful inferences. In this dissertation, we use hidden Markov models (HMM) and a modied reversible jump Markov chain Monte Carlo algorithm to analyze the longitudinal medical data . For an eye tracking data of participants looking at chest X-rays with a potential cancerous nodule, we use the HMM model to nd out what areas on the images attract participants attention more, how their eyes jump among these areas, and which scan pattern is related to an eective detection of the nodule. We estimated the total number of areas of interest (AOIs) on each image, as well as their centers, sizes and orientations. We use pixel luminance as prior information, as nodules are often brighter and luminance may thus aect the AOIs. Dierences in scan patterns between those who found the nodule and those who didn't, are discussed. For a HIV clinical trial data, we use the hidden Markov model to estimate the health states each patient at dierent time points, compare the states with physical phenomena in HIV clinical trials, and predict health development patterns.en_US
dc.subject.pquncontrolledAreas of interesten_US
dc.subject.pquncontrolledEye trackingen_US
dc.subject.pquncontrolledHealth Statesen_US
dc.subject.pquncontrolledReversible jump Markov chain Monte Carloen_US
dc.titleReversible jump Hidden Markov Model Analysis of Longitudinal Data with Medical Applicationsen_US


Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
24.41 MB
Adobe Portable Document Format