A Methodology for Determining the Fire Performance Equivalency Amongst Similar Materials During a Full-scale Fire Scenario Based on Bench-scale Testing
Files
Publication or External Link
Date
Authors
Advisor
Citation
DRUM DOI
Abstract
A methodology was developed for determining the equivalency amongst materials during a full-scale fire scenario. This procedure utilizes milligram-scale and or bench-scale tests to obtain the effective physical and chemical properties of individual materials through an optimization procedure. A flame heat feedback model was developed for corner-wall flame spread and implemented into a two-dimensional pyrolysis model, ThermaKin2D. ThermaKin2D was utilized to simulate upward flame spread during the room corner test. A criterion was created that determines the fire performance of similar materials during this full-scale fire scenario and compares how each material performed relative to one another. A fire investigator will be able to better select materials for their reconstructive fire test based on the modeled full-scale fire performance of candidate materials compared to the exemplar material found during the fire investigation. Overall, this procedure is expected to improve a fire investigator’s ability to perform accurate reconstructive fire tests.