Review of Thermal Energy Storage Technologies and Experimental Investigation of Adsorption Thermal Energy Storage for Residential Application
Files
Publication or External Link
Date
Authors
Advisor
Citation
DRUM DOI
Abstract
Thermal energy storage (TES) technologies can reduce or eliminate the peak electric power loads in buildings, and utilize benefits of waste heat recovery and renewable energy. This thesis work consists of TES literature review and experimental investigation of adsorption TES. Review work includes cold storage technologies for air conditioning and subzero applications, and heat storage technologies for residential application. Different technologies involving sensible, latent and sorption TES were compared and resolutions of their issues were summarized. In addition, adsorption TES was experimentally investigated and its energy and exergy flows were analyzed to evaluate the effects of different operating parameters, such as temperature and heat transfer fluid mass flow rate for different chambers on the system performance. Finally, a computer model was developed for the adsorption heat TES system integrated with a vapor compression heat pump to assess its performance. Simulation results showed that overall coefficient of performance (COP) and exergy-based COP are approximately 3.11 and 0.20, respectively.