On the Mechanism of Electron Beam Radiation-Induced Modification of Poly(lactic Acid) for Applications in Biodegradable Food Packaging

dc.contributor.advisorAl-Sheikhly, Mohamad
dc.contributor.authorAcha, Chris
dc.contributor.authorBlanchard, Robert
dc.contributor.authorBrodsky, Jon
dc.contributor.authorDing, Lilly
dc.contributor.authorFox, Andrea
dc.contributor.authorGrosvenor, Eleanor
dc.contributor.authorGibson, Kalina
dc.contributor.authorHoy, Annie
dc.contributor.authorHughes, Justin
dc.contributor.authorLee, Kristen
dc.contributor.authorMihok, Olivia
dc.contributor.authorStanfield, Cade
dc.contributor.authorUniyal, Ananya
dc.contributor.authorWhitaker, Sydney
dc.date.accessioned2022-08-29T18:13:09Z
dc.date.available2022-08-29T18:13:09Z
dc.date.issued2022
dc.descriptionGemstone Team PRODUCEen_US
dc.description.abstractPoly(lactic acid) (PLA) is a biodegradable polymer used for food packaging. The effects of electron beam radiation on the chemical and physical properties of amorphous PLA were studied. In this study, amorphous, racemic PLA was irradiated at doses of 5, 10, 15, and 20 kGy in the absence of oxygen. Utilizing electron paramagnetic resonance spectrometry, it was found that alkoxyl radicals are initially formed as a result of C-O-C bond scissions on the backbone of the PLA. The dominant radiation mechanism was determined to be H-abstraction by alkoxyl radicals to form C-centered radicals. The C-centered radicals undergo a subsequent peroxidation reaction with oxygen. The gel permeation chromatography (GPC) results indicate reduction in polymer molecular mass. The differential scanning calorimetry and X-ray diffraction results showed a subtle increase in crystallinity of the irradiated PLA. Water vapor transmission rates were unaffected by irradiation. Further mechanical testing showed mechanical properties in line with reduced molecular mass. In conclusion, these results support that irradiated PLA is a suitable material for applications in irradiation of food packaging, including food sterilization and biodegradation.en_US
dc.identifierhttps://doi.org/10.13016/dxhv-vpvi
dc.identifier.urihttp://hdl.handle.net/1903/29097
dc.language.isoen_USen_US
dc.relation.isAvailableAtDigital Repository at the University of Maryland
dc.relation.isAvailableAtGemstone Program, University of Maryland (College Park, Md)
dc.subjectGemstone Team PRODUCEen_US
dc.titleOn the Mechanism of Electron Beam Radiation-Induced Modification of Poly(lactic Acid) for Applications in Biodegradable Food Packagingen_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Final Team Produce Thesis.pdf
Size:
4.87 MB
Format:
Adobe Portable Document Format
Description: