Simulation of Coaxial Rotor Interactional Aerodynamics using Coupled CFD-CSD
Files
Publication or External Link
Date
Authors
Advisor
Citation
DRUM DOI
Abstract
Performance and range requirements for next-generation rotary-wing aircraft
have sparked renewed interests in the coaxial rotor configuration, augmented with
lift and/or thrust compounding. Often, thrust augmentation is provided in the
form of a propeller or jet engine to counteract the airframe and rotor drag in high
speed forward flight. A notional X2TD coaxial compound configuration has been
chosen to perform numerical simulations in forward flight with CFD-CSD coupling.
The delta loose coupling method is used to couple the CFD and CSD models.
Using the CFD results to correct the reduced order aerodynamics in this loose
coupling framework will drive toward a deeper understanding of rotor-rotor and
rotor-fuselage interactions in the forward flight regime. Using unrestricted data of
the X2TD flight test program the in-house CSD code (PRASADUM) was validated
against both CAMRAD II and flight test data results. Helios, using both Overflow
and NSU3D as near-body solvers was used as the CFD solver for the CFD-CSD
coupling framework. The CFD-CSD coupling framework was used for several key
flight conditions of the X2TD, namely 55, 100, and 150 knots. A comparison study
at both 55 and 150 knots was conducted between an isolated coaxial rotor system
case, and 3 other cases incorporating three different fuselage models to the CFD
analysis: a simple fuselage body, a complex fuselage body containing horizontal and
vertical stabilizers, and lastly the complex fuselage body with the added inclusion
of the rotor mast.