Melting and Phase Relations in Iron-Silicon Alloys with Applications to the Earth's Core

Loading...
Thumbnail Image
Files
Publication or External Link
Date
2009
Authors
Miller, Noah Andrew
Advisor
Campbell, Andrew
Citation
DRUM DOI
Abstract
Experiments were performed on iron-silicon alloys to determine their suitability as analog compositions for the Earth's core. Starting compositions with 9 wt.% silicon and 16 wt.% silicon were compressed in diamond anvil cells and laser-heated. The melting temperatures of the alloys were measured up to 52 GPa using a recently developed optical system. Both curves show a melting point depression from pure iron but intersect at ~50 GPa. The two starting compositions were also studied up to 90 GPa and over 3500 K in synchrotron x-ray diffraction experiments, and phase diagrams were constructed for both compositions that show significant deviation from the pure iron phase diagram. Based on this synchrotron data, a model was produced which predicts the core to contain 8.6 to 11.1 wt.% silicon for a core-mantle boundary temperature of 4000 K.
Notes
Rights