Equivariant Giambelli Formulae for Grassmannians

dc.contributor.advisorTamvakis, Harryen_US
dc.contributor.authorWilson, Elizabeth McLaughlinen_US
dc.contributor.departmentMathematicsen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.date.accessioned2011-02-19T07:01:23Z
dc.date.available2011-02-19T07:01:23Z
dc.date.issued2010en_US
dc.description.abstractIn this thesis we use Young's raising operators to define and study polynomials which represent the Schubert classes in the equivariant cohomology ring of Grassmannians. For the type A and maximal isotropic Grassmannians, we show that our expressions coincide with the factorial Schur S, P, and Q functions. We define factorial theta polynomials, and conjecture that these represent the Schubert classes in the equivariant cohomology of non-maximal symplectic Grassmannians. We prove that the factorial theta polynomials satisfy the equivariant Chevalley formula, and that they agree with the type C double Schubert polynomials of [IMN] in some cases.en_US
dc.identifier.urihttp://hdl.handle.net/1903/11190
dc.subject.pqcontrolledMathematicsen_US
dc.subject.pquncontrolledCohomologyen_US
dc.subject.pquncontrolledEquivarianten_US
dc.subject.pquncontrolledGiambellien_US
dc.subject.pquncontrolledGrassmannianen_US
dc.subject.pquncontrolledIsotropicen_US
dc.subject.pquncontrolledSchuberten_US
dc.titleEquivariant Giambelli Formulae for Grassmanniansen_US
dc.typeDissertationen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Wilson_umd_0117E_11753.pdf
Size:
489.3 KB
Format:
Adobe Portable Document Format