An Enumeration Problem In Digital Geometry.
dc.contributor.author | Berenstein, Carlos A. | en_US |
dc.contributor.author | Lavine, David | en_US |
dc.contributor.department | ISR | en_US |
dc.date.accessioned | 2007-05-23T09:35:07Z | |
dc.date.available | 2007-05-23T09:35:07Z | |
dc.date.issued | 1986 | en_US |
dc.description.abstract | We prove that the number L(N) of digital line segments of length N(corresponding to the line y=ax+b <= a < 1, 0 < b < 1) has the asymptotic expansion: L(N)=N^3/PI^2+0(N^2 log N) This expression has applications in image registration problems and originated in a question posed by NASA. | en_US |
dc.format.extent | 280677 bytes | |
dc.format.mimetype | application/pdf | |
dc.identifier.uri | http://hdl.handle.net/1903/4448 | |
dc.language.iso | en_US | en_US |
dc.relation.ispartofseries | ISR; TR 1986-22 | en_US |
dc.title | An Enumeration Problem In Digital Geometry. | en_US |
dc.type | Technical Report | en_US |
Files
Original bundle
1 - 1 of 1