An Enumeration Problem In Digital Geometry.

dc.contributor.authorBerenstein, Carlos A.en_US
dc.contributor.authorLavine, Daviden_US
dc.contributor.departmentISRen_US
dc.date.accessioned2007-05-23T09:35:07Z
dc.date.available2007-05-23T09:35:07Z
dc.date.issued1986en_US
dc.description.abstractWe prove that the number L(N) of digital line segments of length N(corresponding to the line y=ax+b <= a < 1, 0 < b < 1) has the asymptotic expansion: L(N)=N^3/PI^2+0(N^2 log N) This expression has applications in image registration problems and originated in a question posed by NASA.en_US
dc.format.extent280677 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/1903/4448
dc.language.isoen_USen_US
dc.relation.ispartofseriesISR; TR 1986-22en_US
dc.titleAn Enumeration Problem In Digital Geometry.en_US
dc.typeTechnical Reporten_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR_86-22.pdf
Size:
274.1 KB
Format:
Adobe Portable Document Format