Data Requirements to Enable PHM for Liquid Hydrogen Storage Systems from a Risk Assessment Perspective

Thumbnail Image
Publication or External Link
Correa Jullian, Camila Asuncion
Groth, Katrina M
Quantitative Risk Assessment (QRA) aids the development of risk-informed safety codes and standards which are employed to reduce risk in a variety of complex technologies, such as hydrogen systems. Currently, the lack of reliability data limits the use of QRAs for fueling stations equipped with bulk liquid hydrogen storage systems. In turn, this hinders the ability to develop the necessary rigorous safety codes and standards to allow worldwide deployment of these stations. Prognostics and Health Management (PHM) and the analysis of condition-monitoring data emerge as an alternative to support risk assessment methods. Through the QRA-based analysis of a liquid hydrogen storage system, the core elements for the design of a data-driven PHM framework are addressed from a risk perspective. This work focuses on identifying the data collection requirements to strengthen current risk analyses and enable data-driven approaches to improve the safety and risk assessment of a liquid hydrogen fueling infrastructure.