Heat Transfer Coefficient and Pressure Drop Gas Cooling Measurements for CO2/Oil Mixture in a Micro Channel Tube
Files
Publication or External Link
Date
Authors
Advisor
Citation
DRUM DOI
Abstract
An experimental study was conducted to measure the heat transfer characteristics and pressure drop of supercritical Carbon Dioxide (CO2) in gas cooling conditions while flowing through a horizontal micro channel. Five experiments were conducted at operating conditions that included an inlet temperature of 70°, inlet pressures of 8 to 10 MPa, a mass flux of 400 kg/m2s, heat fluxes of 10 and 15 kW/m2, and oil concentration ratios of 6.58 to 10.72 wt.% with ND-8, polyalkylene glycol (PAG) oil. This data revealed trends that CO2 flowing through a micro channel has a reduced heat transfer coefficient and an increased pressure drop with an OCR over 6 wt.% in comparison to the predicted values. The measured heat transfer coefficient for the CO2 was 70% smaller than the predicted value using the Gnielinski correlation. The measured pressure drop for the CO2 was 150% larger than the predicted value using the Darcy-Weisbach correlation.