Optimization of Signal Routing in Disruption-Tolerant Networks
Files
(RESTRICTED ACCESS)
Publication or External Link
Date
Authors
Advisor
Citation
DRUM DOI
Abstract
Communication networks are prone to disruption due to inherent uncertainties such as environmental conditions, system outages, and other factors. However, current state-of-the-art communication protocols are not yet optimized for communication in highly disruption-prone environments, such as deep space, where the risk of such uncertainties is not negligible. This work involves the development of a novel protocol for disruption-tolerant communication across space-based networks that avoids idealized assumptions and is consistent with system limitations. The proposed solution is grounded in an approach to information as a time-based commodity, and on reframing the problem of efficient signal routing as a problem of value optimization. The efficacy of the novel protocol was evaluated via a custom Monte Carlo simulation against other state-of-the-art protocols in terms of maintaining both data integrity and transmission speed, and was found to provide a consistent advantage across both metrics of interest.