Development and Validation of an NPSS Model of a Small Turbojet Engine

Thumbnail Image


Publication or External Link





Recent studies have shown that integrated gas turbine engine (GT)/solid oxide fuel cell (SOFC) systems for combined propulsion and power on aircraft offer a promising method for more efficient onboard electrical power generation. However, it appears that nobody has actually attempted to construct a hybrid GT/SOFC prototype for combined propulsion and electrical power generation. This thesis contributes to this ambition by developing an experimentally validated thermodynamic model of a small gas turbine (~230 N thrust) platform for a bench-scale GT/SOFC system. The thermodynamic model is implemented in a NASA-developed software environment called Numerical Propulsion System Simulation (NPSS). An indoor test facility was constructed to measure the engine’s performance parameters: thrust, air flow rate, fuel flow rate, engine speed (RPM), and all axial stage stagnation temperatures and pressures. The NPSS model predictions are compared to the measured performance parameters for steady state engine operation.