Nonlinear and Stochastic Analysis of Miniature Optoelectronic Oscillators based on Whispering-Gallery Mode Modulators

Thumbnail Image

Publication or External Link





Optoelectronic oscillators are nonlinear closed-loop systems that convert optical energy into electrical energy. We investigate the nonlinear dynamics of miniature optoelectronic oscillators (OEOs) based on whispering-gallery mode resonators. In these systems, the whispering-gallery mode resonator features a quadratic nonlinearity and operates as an electrooptical modulator, thereby eliminating the need for an integrated Mach-Zehnder modulator. The narrow optical resonances eliminate as well the need for both an optical fiber delay line and an electric bandpass filter in the optoelectronic feedback loop. The architecture of miniature OEOs therefore appears as significantly simpler than the one of their traditional counterparts, and permits to achieve competitive metrics in terms of size, weight, and power (SWAP). Our theoretical approach is based on the closed-loop coupling between the optical intracavity modes and the microwave signal generated via the photodetection of the output electrooptical comb.

In the first part of our investigation, we use a slowly-varying envelope approach to propose a time-domain model to analyze the dynamical behavior of miniature OEOs. This model takes into account the interactions among the intracavity modes, as well as the coupled interactions with the radiofrequency (RF) microstrip. The stability analysis allows us to determine analytically and optimize the critical value of the feedback gain needed to trigger self-sustained oscillations. It also allows us to understand how key parameters of the system such as cavity detuning or coupling efficiency influence the onset of the radiofrequency oscillation. Furthermore, we determine the threshold laser power needed to trigger oscillations in amplifierless miniature OEOs based on WGM modulators. This latter architecture, while also improving on the size, weight, performance and cost (SWAP-C) constraints, is intended to reduce noise in the system.

In the second part of our investigation, we use a Langevin approach to perform a stochastic analysis of our miniature OEO. We propose a stochastic mathematical model to describe the system dynamics and analyze the stochastic behavior below threshold. We also propose a normal form approach for the noise power density and the phase noise spectrum. Our study is complemented by time-domain simulations for the microwave and optical signals, which are in excellent agreement with the analytical predictions.

In the third part of our study, we discuss our preliminary results in the analysis of the effects of dispersion in a microcomb oscillator with optical feedback. For this purpose, we propose a closed-loop miniature optical oscillator. The output signal is optically amplified before being coupled back into the cavity using a prism coupling. Using a Lugiato-Lefever approach, we propose a spatiotemporal nonlinear partial differential equation to describe the dynamics of the total intracavity field. We perform temporal and spatial analysis and derive the bifurcation maps in anomalous and normal dispersion regimes.